# 1.2: Nodes - Mathematics

We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Network data are defined by actors and by relations (or "nodes" and "edges"). Other empirical approaches in the social sciences also think in terms of cases or subjects or sample elements and the like. There is one difference with most network data, however, that makes a big difference in how such data are usually collected -- and the kinds of samples and populations that are studied.

Network analysis focuses on the relations among actors, and not individual actors and their attributes. This means that the actors are usually not sampled independently, as in many other kinds of studies (most typically, surveys). Suppose we are studying friendship ties, for example. John has been selected to be in our sample. When we ask him, John identifies seven friends. We need to track down each of those seven friends and ask them about their friendship ties, as well. The seven friends are in our sample because John is (and vice-versa), so the "sample elements" are no longer "independent."

The nodes or actors included in non-network studies tend to be the result of independent probability sampling. Network studies are much more likely to include all of the actors who occur within some (usually naturally occurring) boundary. Often network studies don't use "samples" at all, at least in the conventional sense. Rather, they tend to include all of the actors in some population or populations. Of course, the populations included in a network study may be a sample of some larger set of populations. For example, when we study patterns of interaction among students in a classrooms, we include all of the children in a classroom (that is, we study the whole population of the classroom). The classroom itself, though, might have been selected by probability methods from a population of classrooms (say all of those in a school).

The use of whole populations as a way of selecting observations in (many) network studies makes it important for the analyst to be clear about the boundaries of each population to be studied, and how individual units of observation are to be selected within that population. Network data sets also frequently involve several levels of analysis, with actors embedded at the lowest level (i.e. network designs can be described using the language of "nested" designs).

## Populations, samples, and boundaries

Social network analysts rarely draw samples in their work. Most commonly, network analysts will identify some population and conduct a census (i.e. include all elements of the population as units of observation). A network analyst might examine all of the nouns and objects occurring in a text, all of the persons at a birthday party, all members of a kinship group, of an organization, neighborhood, or social class (e.g. landowners in a region, or royalty).

Survey research methods usually use a quite different approach to deciding which nodes to study. A list is made of all nodes (sometimes stratified or clustered), and individual elements are selected by probability methods. The logic of the method treats each individual as a separate "replication" that is, in a sense, interchangeable with any other.

Because network methods focus on relations among actors, actors cannot be sampled independently to be included as observations. If one actor happens to be selected, then we must also include all other actors to whom our ego has (or could have) ties. As a result, network approaches tend to study whole populations by means of census, rather than by sample (we will discuss a number of exceptions to this shortly, under the topic of sampling ties).

The populations that network analysts study are remarkably diverse. At one extreme, they might consist of symbols in texts or sounds in verbalizations; at the other extreme, nations in the world system of states might constitute the population of nodes. Perhaps most common, of course, are populations of individual persons. In each case, however, the elements of the population to be studied are defined by falling within some boundary.

## Input Arguments

### G — Input graph graph object

Input graph, specified as a graph object. Use graph to create an undirected graph object.

Example: G = graph(1,2)

### NodeIDs — Node identifiers node indices | node names

Node identifiers, specified as one or more node indices or node names.

This table shows the different ways to refer to one or more nodes either by their numeric node indices or by their node names.

Example: [1 2 3]

Cell array of character vectors

Example: ["A" "B" "C"]

Example: D = degree(G,[3 4])

Example: D = degree(G,<'LAX','ALB'>)

## Watch the video: Wire Training Course - Nodes (July 2022).

1. Stok

Is compliant

2. Guafi

Very good idea

3. Zulema

Do not use

4. Denley

You are not right. Let's discuss. Write to me in PM, we will talk.